Synthesis of mannoheptose derivatives and their evaluation as inhibitors of the lectin LecB from the opportunistic pathogen Pseudomonas aeruginosa.
نویسندگان
چکیده
Biofilm formation and chronic infections with Pseudomonas aeruginosa depend on lectins produced by the bacterium. The bacterial C-type lectin LecB binds to the two monosaccharides l-fucose and d-mannose and conjugates thereof. Previously, d-mannose derivatives with amide and sulfonamide substituents at C6 were reported as potent inhibitors of the bacterial lectin LecB and LecB-mediated bacterial surface adhesion. Because d-mannose establishes a hydrogen bond via its 6-OH group with Ser23 of LecB in the crystal structure and may be beneficial for binding affinity, we extended d-mannose and synthesized mannoheptoses bearing the free 6-OH group as well as amido and sulfonamido-substituents at C7. Two series of diastereomeric mannoheptoses were synthesized and the stereochemistry was determined by X-ray crystallography. The potency of the mannoheptoses as LecB inhibitors was assessed in a competitive binding assay. The data reveal a diastereoselectivity of LecB for (6S)-mannoheptose derivatives with increased activity over methyl α-d-mannoside.
منابع مشابه
Cinnamide Derivatives of d‐Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa †
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen with high antibiotic resistance. Its lectin LecB was identified as a virulence factor and is relevant in bacterial adhesion and biofilm formation. Inhibition of LecB with carbohydrate-based ligands results in a decrease in toxicity and biofilm formation. We recently discovered two classes of potent drug-like glycomimetic inhibito...
متن کاملDevelopment of a competitive binding assay for the Burkholderia cenocepacia lectin BC2L-A and structure activity relationship of natural and synthetic inhibitors
Burkholderia cenocepacia is an opportunistic Gram-negative pathogen and especially hazardous for cystic fibrosis patients. In analogy to its relative Pseudomonas aeruginosa, B. cenocepacia possess numerous lectins with roles in adhesion and biofilm formation. The LecB homolog BC2L-A is important for biofilm structure and morphology. Inhibitors of this D-mannose specific C-type lectin could be u...
متن کاملA Biophysical Study with Carbohydrate Derivatives Explains the Molecular Basis of Monosaccharide Selectivity of the Pseudomonas aeruginosa Lectin LecB
The rise of resistances against antibiotics in bacteria is a major threat for public health and demands the development of novel antibacterial therapies. Infections with Pseudomonas aeruginosa are a severe problem for hospitalized patients and for patients suffering from cystic fibrosis. These bacteria can form biofilms and thereby increase their resistance towards antibiotics. The bacterial le...
متن کاملPseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation
Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the de...
متن کاملBiologically Active Heteroglycoclusters Constructed on a Pillar[5]arene‐Containing [2]Rotaxane Scaffold
A synthetic approach combining recent concepts for the preparation of multifunctional nanomolecules (click chemistry on multifunctional scaffolds) with supramolecular chemistry (self-assembly to prepare rotaxanes) gave easy access to a large variety of sophisticated [2]rotaxane heteroglycoclusters. Specifically, compounds combining galactose and fucose have been prepared to target the two bacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carbohydrate research
دوره 412 شماره
صفحات -
تاریخ انتشار 2015